Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
mBio ; 14(4): e0148223, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37486132

RESUMO

Epithelial colonization is a critical first step in bacterial pathogenesis. Staphylococcus aureus can utilize several host factors to associate with cells, including α5ß1 integrin and heparan sulfate proteoglycans, such as the syndecans. Here, we demonstrate that a partner protein of both integrins and syndecans, the host membrane adapter protein tetraspanin CD9, is essential for syndecan-mediated staphylococcal adhesion. Fibronectin is also essential in this process, while integrins are only critical for post-adhesion entry into human epithelial cells. Treatment of epithelial cells with CD9-derived peptide or heparin caused significant reductions in staphylococcal adherence, dependent on both CD9 and syndecan-1. Exogenous fibronectin caused a CD9-dependent increase in staphylococcal adhesion, whereas blockade of ß1 integrins did not affect adhesion but did reduce the subsequent internalization of adhered bacteria. CD9 disruption or deletion increased ß1 integrin-mediated internalization, suggesting that CD9 coordinates sequential staphylococcal adhesion and internalization. CD9 controls staphylococcal adhesion through syndecan-1, using a mechanism that likely requires CD9-mediated syndecan organization to correctly display fibronectin at the host cell surface. We propose that CD9-derived peptides or heparin analogs could be developed as anti-adhesion treatments to inhibit the initial stages of staphylococcal pathogenesis. IMPORTANCE Staphylococcus aureus infection is a significant cause of disease and morbidity. Staphylococci utilize multiple adhesion pathways to associate with epithelial cells, including interactions with proteoglycans or ß1 integrins through a fibronectin bridge. Interference with another host protein, tetraspanin CD9, halves staphylococcal adherence to epithelial cells, although CD9 does not interact directly with bacteria. Here, we define the role of CD9 in staphylococcal adherence and uptake, observing that CD9 coordinates syndecan-1, fibronectin, and ß1 integrins to allow efficient staphylococcal infection. Two treatments that disrupt this action are effective and may provide an alternative to antibiotics. We provide insights into the mechanisms that underlie staphylococcal infection of host cells, linking two known adhesion pathways together through CD9 for the first time.


Assuntos
Infecções Estafilocócicas , Sindecana-1 , Humanos , Sindecana-1/genética , Fibronectinas/metabolismo , Adesão Celular , Integrinas , Proteínas de Membrana , Integrina beta1/metabolismo , Heparina , Tetraspaninas , Tetraspanina 29
2.
Ocul Surf ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37406881

RESUMO

Pseudomonas aeruginosa is a leading cause of corneal infection both within India and globally, often causing a loss of vision. Increasing antimicrobial resistance among the bacteria is making its treatment more difficult. Preventing initial bacterial adherence to the host membrane has been explored here to reduce infection of the cornea. Synthetic peptides derived from human tetraspanin CD9 have been shown to reduce infection in corneal cells both in vitro, ex vivo and in vivo. We found constitutive expression of CD9 in immortalized human corneal epithelial cells by flow cytometry and immunocytochemistry. The synthetic peptides derived from CD9 significantly reduced bacterial adherence to cultured corneal epithelial cells and ex vivo human cadaveric corneas as determined by colony forming units. The peptides also significantly reduced bacterial burden in a murine model of Pseudomonas keratitis and lowered the cellular infiltration in the corneal stroma. Additionally, the peptides aided corneal wound healing in uninfected C57BL/6 mice compared to control mice. These potential therapeutics had no effect on cell viability or proliferation of corneal epithelial cells and have the potential to be developed as an alternative therapeutic intervention.

3.
Microbiology (Reading) ; 169(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821361

RESUMO

Colonization of mucosal tissues by Neisseria meningitidis requires adhesion mediated by the type IV pilus and multiple outer-membrane proteins. Penetration of the mucosa and invasion of epithelial cells are thought to contribute to host persistence and invasive disease. Using Calu-3 cell monolayers grown at an air-liquid interface, we examined adhesion, invasion and monolayer disruption by carriage isolates of two clonal complexes of N. meningitidis. Carriage isolates of both the serogroup Y cc23 and the hypervirulent serogroup W cc11 lineages exhibited high levels of cellular adhesion, and a variable disruption phenotype across independent isolates. Inactivation of the gene encoding the main pilus sub-unit in multiple cc11 isolates abrogated both adhesive capacity and ability to disrupt epithelial monolayers. Contrastingly, inactivation of the phase-variable opa or nadA genes reduced adhesion and invasion, but not disruption of monolayer integrity. Adherence of tissue-disruptive meningococci correlated with loss of staining for the tight junction protein, occludin. Intriguingly, in a pilus-negative strain background, we observed compensatory ON switching of opa genes, which facilitated continued adhesion. We conclude that disruption of epithelial monolayers occurs in multiple meningococcal lineages but can vary during carriage and is intimately linked to pilus-mediated adhesion.


Assuntos
Infecções Meningocócicas , Neisseria meningitidis , Humanos , Neisseria meningitidis/genética , Sorogrupo , Fímbrias Bacterianas
4.
Commun Biol ; 5(1): 666, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790808

RESUMO

B.1.1.7 lineage SARS-CoV-2 is more transmissible, leads to greater clinical severity, and results in modest reductions in antibody neutralization. Subgenomic RNA (sgRNA) is produced by discontinuous transcription of the SARS-CoV-2 genome. Applying our tool (periscope) to ARTIC Network Oxford Nanopore Technologies genomic sequencing data from 4400 SARS-CoV-2 positive clinical samples, we show that normalised sgRNA is significantly increased in B.1.1.7 (alpha) infections (n = 879). This increase is seen over the previous dominant lineage in the UK, B.1.177 (n = 943), which is independent of genomic reads, E cycle threshold and days since symptom onset at sampling. A noncanonical sgRNA which could represent ORF9b is found in 98.4% of B.1.1.7 SARS-CoV-2 infections compared with only 13.8% of other lineages, with a 16-fold increase in median sgRNA abundance. We demonstrate that ORF9b protein levels are increased 6-fold in B.1.1.7 compared to a B lineage virus in vitro. We hypothesise that increased ORF9b in B.1.1.7 is a direct consequence of a triple nucleotide mutation in nucleocapsid (28280:GAT > CAT, D3L) creating a transcription regulatory-like sequence complementary to a region 3' of the genomic leader. These findings provide a unique insight into the biology of B.1.1.7 and support monitoring of sgRNA profiles to evaluate emerging potential variants of concern.


Assuntos
COVID-19 , RNA , COVID-19/diagnóstico , COVID-19/genética , Humanos , SARS-CoV-2/genética
5.
Adv Microb Physiol ; 80: 35-83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35489793

RESUMO

Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Gonorreia/microbiologia , Humanos , Ferro/metabolismo , Lactatos/metabolismo , Neisseria gonorrhoeae/metabolismo , Virulência
6.
Cells ; 10(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200372

RESUMO

Coronaviruses such as SARS-CoV-2, which is responsible for COVID-19, depend on virus spike protein binding to host cell receptors to cause infection. The SARS-CoV-2 spike protein binds primarily to ACE2 on target cells and is then processed by membrane proteases, including TMPRSS2, leading to viral internalisation or fusion with the plasma membrane. It has been suggested, however, that receptors other than ACE2 may be involved in virus binding. We have investigated the interactions of recombinant versions of the spike protein with human epithelial cell lines that express low/very low levels of ACE2 and TMPRSS2 in a proxy assay for interaction with host cells. A tagged form of the spike protein containing the S1 and S2 regions bound in a temperature-dependent manner to all cell lines, whereas the S1 region alone and the receptor-binding domain (RBD) interacted only weakly. Spike protein associated with cells independently of ACE2 and TMPRSS2, while RBD required the presence of high levels of ACE2 for interaction. As the spike protein has previously been shown to bind heparin, a soluble glycosaminoglycan, we tested the effects of various heparins on ACE2-independent spike protein interaction with cells. Unfractionated heparin inhibited spike protein interaction with an IC50 value of <0.05 U/mL, whereas two low-molecular-weight heparins were less effective. A mutant form of the spike protein, lacking the arginine-rich putative furin cleavage site, interacted only weakly with cells and had a lower affinity for unfractionated and low-molecular-weight heparin than the wild-type spike protein. This suggests that the furin cleavage site might also be a heparin-binding site and potentially important for interactions with host cells. The glycosaminoglycans heparan sulphate and dermatan sulphate, but not chondroitin sulphate, also inhibited the binding of spike protein, indicating that it might bind to one or both of these glycosaminoglycans on the surface of target cells.


Assuntos
Enzima de Conversão de Angiotensina 2/fisiologia , Células Epiteliais/metabolismo , Heparina/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Células A549 , Enzima de Conversão de Angiotensina 2/genética , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Células CACO-2 , Linhagem Celular , Chlorocebus aethiops , Dermatan Sulfato/farmacologia , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Glicosaminoglicanos/farmacologia , Células HEK293 , Células HaCaT , Heparitina Sulfato/farmacologia , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Células Vero , Internalização do Vírus/efeitos dos fármacos
7.
Genome Res ; 31(4): 645-658, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33722935

RESUMO

We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.


Assuntos
Genoma Viral , RNA Viral/genética , SARS-CoV-2/genética , Análise de Sequência de RNA/métodos , Animais , Sequência de Bases , Chlorocebus aethiops , Humanos , Limite de Detecção , Células Vero
8.
Microb Genom ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33245690

RESUMO

The major human pathogen Streptococcus pyogenes shares an intimate evolutionary history with mobile genetic elements, which in many cases carry genes encoding bacterial virulence factors. During recent whole-genome sequencing of a longitudinal sample of S. pyogenes isolates in England, we identified a lineage within emm4 that clustered with the reference genome MEW427. Like MEW427, this lineage was characterized by substantial gene loss within all three prophage regions, compared to MGAS10750 and isolates outside of the MEW427-like lineage. Gene loss primarily affected lysogeny, replicative and regulatory modules, and to a lesser and more variable extent, structural genes. Importantly, prophage-encoded superantigen and DNase genes were retained in all isolates. In isolates where the prophage elements were complete, like MGAS10750, they could be induced experimentally, but not in MEW427-like isolates with degraded prophages. We also found gene loss within the chromosomal island SpyCIM4 of MEW427-like isolates, although surprisingly, the SpyCIM4 element could not be experimentally induced in either MGAS10750-like or MEW427-like isolates. This did not, however, appear to abolish expression of the mismatch repair operon, within which this element resides. The inclusion of further emm4 genomes in our analyses ratified our observations and revealed an international emm4 lineage characterized by prophage degradation. Intriguingly, the USA population of emm4 S. pyogenes appeared to constitute predominantly MEW427-like isolates, whereas the UK population comprised both MEW427-like and MGAS10750-like isolates. The degraded and cryptic nature of these elements may have important phenotypic and fitness ramifications for emm4 S. pyogenes, and the geographical distribution of this lineage raises interesting questions on the population dynamics of the genotype.


Assuntos
Bacteriófagos/genética , Análise de Sequência de DNA/métodos , Streptococcus pyogenes/classificação , Proteínas Virais/genética , Deleção de Genes , Genoma Bacteriano , Genótipo , Filogenia , Streptococcus pyogenes/genética , Streptococcus pyogenes/virologia , Estados Unidos
9.
Front Genet ; 11: 579411, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365047

RESUMO

Rapid transmission, a critical contributory factor in outbreaks of invasive meningococcal disease, requires naïve populations of sufficient size and intermingling. We examined genomic variability and transmission dynamics in a student population subject to an 11-fold increase in carriage of a hypervirulent Neisseria meningitidis serogroup W ST-11 clone. Phylogenetic clusters, mutation and recombination rates were derived by bioinformatic analyses of whole-genome sequencing data. Transmission dynamics were determined by combining observed carriage rates, cluster sizes and distributions with simple SIS models. Between 9 and 15 genetically-distinct clusters were detected and associated with seven residential halls. Clusters had low mutation accumulation rates and infrequent recombination events. Modeling indicated that effective contacts decreased from 10 to 2 per day between the start and mid-point of the university term. Transmission rates fluctuated between 1 and 4% while the R(t) for carriage decreased from an initial rate of 47 to 1. Decreases in transmission values correlated with a rise in vaccine-induced immunity. Observed carriage dynamics could be mimicked by populations containing 20% of super spreaders with 2.3-fold higher effective contact rates. We conclude that spread of this hypervirulent ST-11 meningococcal clone depends on the levels of effective contacts and immunity rather than genomic variability. Additionally, we propose that super-spreaders enhance meningococcal transmission and that a 70% MenACWY immunization level is sufficient to retard, but not fully prevent, meningococcal spread in close-contact populations.

10.
Cells ; 9(11)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182687

RESUMO

Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are known to colonise the corneal surface as biofilm populations. Biofilms are complex bacterial communities encased in an extracellular polymeric matrix and are notoriously difficult to eradicate once established. Biofilm bacteria exhibit different phenotypic characteristics from their planktonic counterparts, including an increased resistance to antibiotics and the host immune response. Therefore, understanding the role of biofilms will be essential in the development of new ophthalmic antimicrobials. A brief overview of biofilm-specific resistance mechanisms is provided, but this is a highly multifactorial and rapidly expanding field that warrants further research. Progression in this field is dependent on the development of suitable biofilm models that acknowledge the complexity of the ocular environment. Abiotic models of biofilm formation (where biofilms are studied on non-living surfaces) currently dominate the literature, but co-culture infection models are beginning to emerge. In vitro, ex vivo and in vivo corneal infection models have now been reported which use a variety of different experimental techniques and animal models. In this review, we will discuss existing corneal infection models and their application in the study of biofilms and host-pathogen interactions at the corneal surface.


Assuntos
Biofilmes/crescimento & desenvolvimento , Córnea/microbiologia , Ceratite/microbiologia , Córnea/patologia , Humanos
11.
Microb Genom ; 6(5)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375989

RESUMO

Neisseria meningitidis is a Gram-negative human commensal pathogen, with extensive phenotypic plasticity afforded by phase-variable (PV) gene expression. Phase variation is a stochastic switch in gene expression from an ON to an OFF state, mediated by localized hypermutation of simple sequence repeats (SSRs). Circulating N. meningitidis clones vary in propensity to cause disease, with some clonal complexes (ccs) classified as hypervirulent and others as carriage-associated. We examined the PV gene repertoires, or phasome, of these lineages in order to determine whether phase variation contributes to disease propensity. We analysed 3328 genomes representative of nine circulating meningococcal ccs with PhasomeIt, a tool that identifies PV genes by the presence of SSRs and homologous gene clusters. The presence, absence and functions of all identified PV gene clusters were confirmed by annotation or blast searches within the Neisseria PubMLST database. While no significant differences were detected in the number of PV genes or the core, conserved phasome content between hypervirulent and carriage lineages, individual ccs exhibited major variations in PV gene numbers. Phylogenetic clusters produced by phasome or core genome analyses were similar, indicating co-evolution of PV genes with the core genome. While conservation of PV clusters is high, with 76 % present in all meningococcal isolates, maintenance of an SSR is variable, ranging from conserved in all isolates to present only in a single cc, indicating differing evolutionary trajectories for each lineage. Diverse functional groups of PV genes were present across the meningococcal lineages; however, the majority directly or indirectly influence bacterial surface antigens and could impact on future vaccine development. Finally, we observe that meningococci have open pan phasomes, indicating ongoing evolution of PV gene content and a significant potential for adaptive changes in this clinically relevant genus.


Assuntos
Biologia Computacional/métodos , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/patogenicidade , Fatores de Virulência/genética , Evolução Molecular , Genoma Bacteriano , Humanos , Repetições de Microssatélites , Neisseria meningitidis/genética , Neisseria meningitidis/isolamento & purificação , Fenótipo , Filogenia , Reino Unido
12.
mBio ; 11(2)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209693

RESUMO

Host persistence of bacteria is facilitated by mutational and recombinatorial processes that counteract loss of genetic variation during transmission and selection from evolving host responses. Genetic variation was investigated during persistent asymptomatic carriage of Neisseria meningitidis Interrogation of whole-genome sequences for paired isolates from 25 carriers showed that de novo mutations were infrequent, while horizontal gene transfer occurred in 16% of carriers. Examination of multiple isolates per time point enabled separation of sporadic and transient allelic variation from directional variation. A comprehensive comparative analysis of directional allelic variation with hypermutation of simple sequence repeats and hyperrecombination of class 1 type IV pilus genes detected an average of seven events per carrier and 2:1 bias for changes due to localized hypermutation. Directional genetic variation was focused on the outer membrane with 69% of events occurring in genes encoding enzymatic modifiers of surface structures or outer membrane proteins. Multiple carriers exhibited directional and opposed switching of allelic variants of the surface-located Opa proteins that enables continuous expression of these adhesins alongside antigenic variation. A trend for switching from PilC1 to PilC2 expression was detected, indicating selection for specific alterations in the activities of the type IV pilus, whereas phase variation of restriction modification (RM) systems, as well as associated phasevarions, was infrequent. We conclude that asymptomatic meningococcal carriage on mucosal surfaces is facilitated by frequent localized hypermutation and horizontal gene transfer affecting genes encoding surface modifiers such that optimization of adhesive functions occurs alongside escape of immune responses by antigenic variation.IMPORTANCE Many bacterial pathogens coexist with host organisms, rarely causing disease while adapting to host responses. Neisseria meningitidis, a major cause of meningitis and septicemia, is a frequent persistent colonizer of asymptomatic teenagers/young adults. To assess how genetic variation contributes to host persistence, whole-genome sequencing and hypermutable sequence analyses were performed on multiple isolates obtained from students naturally colonized with meningococci. High frequencies of gene transfer were observed, occurring in 16% of carriers and affecting 51% of all nonhypermutable variable genes. Comparative analyses showed that hypermutable sequences were the major mechanism of variation, causing 2-fold more changes in gene function than other mechanisms. Genetic variation was focused on genes affecting the outer membrane, with directional changes in proteins responsible for bacterial adhesion to host surfaces. This comprehensive examination of genetic plasticity in individual hosts provides a significant new platform for rationale design of approaches to prevent the spread of this pathogen.


Assuntos
Infecções Assintomáticas , Variação Genética , Mutação , Neisseria meningitidis/genética , Alelos , Variação Antigênica , Aderência Bacteriana , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Transferência Genética Horizontal , Humanos , Estudos Longitudinais , Fenótipo , Sequenciamento Completo do Genoma
13.
Microbiol Resour Announc ; 8(30)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346007

RESUMO

Aeromonas bacteria are able to cause disease in a wide range of animals from humans to fish. In this article, we report the draft whole-genome sequences of 10 Aeromonas strains from clinical and environmental sources. These genome sequences will provide a repository of information for further investigations into the pathogenicity of this enigmatic pathogen.

14.
J Infect Dis ; 220(7): 1109-1117, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31119276

RESUMO

BACKGROUND: Since 2009, increases in the incidence of invasive meningococcal disease have occurred in the United Kingdom due to a sublineage of the Neisseria meningitidis serogroup W ST-11 clonal complex (hereafter, the "original UK strain"). In 2013, a descendent substrain (hereafter, the "2013 strain") became the dominant disease-causing variant. Multiple outer-membrane proteins of meningococci are subject to phase-variable switches in expression due to hypermutable simple-sequence repeats. We investigated whether alterations in phase-variable genes may have influenced the relative prevalence of the original UK and 2013 substrains, using multiple disease and carriage isolates. METHODS: Repeat numbers were determined by either bioinformatics analysis of whole-genome sequencing data or polymerase chain reaction amplification and sizing of fragments from genomic DNA extracts. Immunoblotting and sequence-translation analysis was performed to identify expression states. RESULTS: Significant increases in repeat numbers were detected between the original UK and 2013 strains in genes encoding PorA, NadA, and 2 Opa variants. Invasive and carriage isolates exhibited similar repeat numbers, but the absence of pilC gene expression was frequently associated with disease. CONCLUSIONS: Elevated repeat numbers in outer-membrane protein genes of the 2013 strain are indicative of higher phase-variation rates, suggesting that rapid expansion of this strain was due to a heightened ability to evade host immune responses during transmission and asymptomatic carriage.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Variação Genética , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/genética , Adesinas Bacterianas/genética , DNA Bacteriano/análise , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Infecções Meningocócicas/epidemiologia , Repetições de Microssatélites/genética , Epidemiologia Molecular , Porinas/genética , Análise de Sequência de DNA , Sorogrupo , Reino Unido , Sequenciamento Completo do Genoma
15.
Methods Mol Biol ; 1969: 83-92, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30877670

RESUMO

Phase variation (PV) enables high frequency, reversible switches in expression of genetic loci across numerous species of bacteria. A major mechanism of PV in bacteria is the use of slipped strand mispairing across simple sequence repeats (SSRs). The generation and online availability of genomic datasets enables a comprehensive analysis of the distribution and composition of SSRs across multiple bacterial genomes of a species. PhasomeIt is a program that was developed to rapidly identify SSRs, to determine whether these SSRs mediate PV and to find homologous PV loci across multiple genomes. We describe use of this program for analysis of neisserial genomes. We further describe a method to reassemble specific PV loci to allow analysis of large repeat tracts which are often poorly assembled due to inherent drawbacks of the Illumina next generation sequencing (NGS) platform. These methodologies allow for rapid analysis of a major mechanism of PV across numerous species of Neisseria and other bacterial species.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , DNA Bacteriano/genética , Loci Gênicos , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites , Regulação Bacteriana da Expressão Gênica , Variação Genética
16.
Microb Genom ; 4(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30351264

RESUMO

Hypermutable simple sequence repeats (SSRs) are drivers of phase variation (PV) whose stochastic, high-frequency, reversible switches in gene expression are a common feature of several pathogenic bacterial species, including the human pathogen Campylobacter jejuni. Here we examine the distribution and conservation of known and putative SSR-driven phase variable genes - the phasome - in the genus Campylobacter. PhasomeIt, a new program, was specifically designed for rapid identification of SSR-mediated PV. This program detects the location, type and repeat number of every SSR. Each SSR is linked to a specific gene and its putative expression state. Other outputs include conservation of SSR-driven phase-variable genes and the 'core phasome' - the minimal set of PV genes in a phylogenetic grouping. Analysis of 77 complete Campylobacter genome sequences detected a 'core phasome' of conserved PV genes in each species and a large number of rare PV genes with few, or no, homologues in other genome sequences. Analysis of a set of partial genome sequences, with food-chain-associated metadata, detected evidence of a weak link between phasome and source host for disease-causing isolates of sequence type (ST)-828 but not the ST-21 or ST-45 complexes. Investigation of the phasomes in the genus Campylobacter provided evidence of overlapping but distinctive mechanisms of PV-mediated adaptation to specific niches. This suggests that the phasome could be involved in host adaptation and spread of campylobacters. Finally, this tool is malleable and will have utility for studying the distribution and genic effects of other repetitive elements in diverse bacterial species.


Assuntos
Campylobacter/genética , Repetições de Microssatélites , Software , Campylobacter/classificação , Campylobacter/metabolismo , Campylobacter coli/genética , Campylobacter jejuni/genética , Expressão Gênica , Genoma Bacteriano , Genômica , Filogenia
17.
J Clin Microbiol ; 56(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29950334

RESUMO

A recombinant NadA protein is one of the four major protective antigens of 4C-MenB (Bexsero), a vaccine developed for serogroup B Neisseria meningitidis (MenB). The meningococcal antigen typing system (MATS) is utilized as a high-throughput assay for assessing the invasive MenB strain coverage of 4C-MenB. Where present, the nadA gene is subject to phase-variable changes in transcription due to a 5'TAAA repeat tract located in a regulatory region. The promoter-containing intergenic region (IGR) sequences and 5'TAAA repeat numbers were determined for 906 invasive meningococcal disease isolates possessing the nadA gene. Exclusion of the 5'TAAA repeats reduced the number of IGR alleles from 82 to 23. Repeat numbers were associated with low and high levels of NadA expression by Western blotting and enzyme-linked immunosorbent assay (ELISA). Low-expression repeat numbers were present in 83% of 179 MenB isolates with NadA-2/3 or NadA-1 peptide variants and 68% of 480 MenW ST-11 complex isolates with NadA-2/3 peptide variants. For isolates with vaccine-compatible NadA variants, 93% of MATS-negative isolates were associated with low-expression repeat numbers, whereas 63% of isolates with MATS relative potency (RP) scores above the 95% confidence interval for the positive bactericidal threshold had high-expression repeat numbers. Analysis of 5'TAAA repeat numbers has potential as a rapid, high-throughput method for assessing strain coverage for the NadA component of 4C-MenB. A key application will be assessing coverage in meningococcal disease cases where confirmation is by PCR only and MATS cannot be applied.


Assuntos
Adesinas Bacterianas/genética , Infecções Meningocócicas/microbiologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Neisseria meningitidis Sorogrupo B/isolamento & purificação , Alelos , Técnicas de Tipagem Bacteriana , DNA Intergênico/genética , Variação Genética , Humanos , Neisseria meningitidis/classificação , Neisseria meningitidis/genética , Neisseria meningitidis/imunologia , Neisseria meningitidis/isolamento & purificação , Neisseria meningitidis Sorogrupo B/classificação , Neisseria meningitidis Sorogrupo B/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica
18.
PLoS One ; 13(5): e0196675, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29763438

RESUMO

Pathogenic Neisseria are responsible for significantly higher levels of morbidity and mortality than their commensal relatives despite having similar genetic contents. Neisseria possess a disparate arsenal of surface determinants that facilitate host colonisation and evasion of the immune response during persistent carriage. Adaptation to rapid changes in these hostile host environments is enabled by phase variation (PV) involving high frequency, stochastic switches in expression of surface determinants. In this study, we analysed 89 complete and 79 partial genomes, from the NCBI and Neisseria PubMLST databases, representative of multiple pathogenic and commensal species of Neisseria using PhasomeIt, a new program that identifies putatively phase-variable genes and homology groups by the presence of simple sequence repeats (SSR). We detected a repertoire of 884 putative PV loci with maxima of 54 and 47 per genome in gonococcal and meningococcal isolates, respectively. Most commensal species encoded a lower number of PV genes (between 5 and 30) except N. lactamica wherein the potential for PV (36-82 loci) was higher, implying that PV is an adaptive mechanism for persistence in this species. We also characterised the repeat types and numbers in both pathogenic and commensal species. Conservation of SSR-mediated PV was frequently observed in outer membrane proteins or modifiers of outer membrane determinants. Intermittent and weak selection for evolution of SSR-mediated PV was suggested by poor conservation of tracts with novel PV genes often occurring in only one isolate. Finally, we describe core phasomes-the conserved repertoires of phase-variable genes-for each species that identify overlapping but distinctive adaptive strategies for the pathogenic and commensal members of the Neisseria genus.


Assuntos
Adaptação Biológica/genética , Proteínas de Bactérias/genética , Variação Genética/genética , Neisseria/genética , Neisseria/patogenicidade , Proteínas da Membrana Bacteriana Externa/genética , Genoma Bacteriano/genética , Repetições de Microssatélites/genética
19.
PLoS One ; 13(5): e0197186, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29847547

RESUMO

Factor H binding protein (fHbp) is a major protective antigen in 4C-MenB (Bexsero®) and Trumenba®, two serogroup B meningococcal vaccines, wherein expression level is a determinant of protection. Examination of promoter-containing intergenic region (IGR) sequences indicated that nine fHbp IGR alleles covered 92% of 1,032 invasive meningococcal strains with variant 1 fHbp alleles. Relative expression values for fHbp were determined for 79 meningococcal isolates covering ten IGR alleles by quantitative reverse transcriptase polymerase chain reaction (qRT PCR). Derivation of expression clusters of IGR sequences by linear regression identified five expression clusters with five nucleotides and one insertion showing statistically associations with differences in expression level. Sequence analysis of 273 isolates examined by the Meningococcal Antigen Typing Scheme, a sandwich ELISA, found that coverage depended on the IGR expression cluster and vaccine peptide homology combination. Specific fHbp peptide-IGR expression cluster combinations were designated as 'at risk' for coverage by 4C-MenB and were detected in multiple invasive meningococcal disease cases confirmed by PCR alone and occurring in partially-vaccinated infants. We conclude that sequence-based analysis of IGR sequences is informative for assessing protein expression and has utility for culture-independent assessments of strain coverage by protein-based vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , DNA Bacteriano/imunologia , DNA Intergênico/imunologia , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Alelos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Sequência de Bases , Fator H do Complemento/genética , Fator H do Complemento/imunologia , DNA Bacteriano/genética , DNA Intergênico/genética , Expressão Gênica , Humanos , Imunogenicidade da Vacina , Lactente , Meningite Meningocócica/genética , Meningite Meningocócica/imunologia , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/genética , Família Multigênica , Neisseria meningitidis Sorogrupo B/genética , Regiões Promotoras Genéticas , Ligação Proteica , Alinhamento de Sequência , Vacinação
20.
J Infect Dis ; 217(4): 608-616, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29155998

RESUMO

Background: In the United Kingdom, rising levels of disease due to Neisseria meningitidis serogroup W clonal complex (cc) sequence type (ST) 11 (MenW:cc11) strains led to introduction of meningococcal conjugate vaccine (MenACWY) for teenagers. We investigated the impact of immunization on carriage of meningococci targeted by the vaccine, using whole-genome sequencing of isolates recovered from a cohort of vaccinated university students. Methods: Strain designation data were extracted from whole-genome sequencing data. Genomes from carried and invasive MenW:cc11 strains were compared using a gene-by-gene approach. Serogrouping identified isolates expressing capsule antigens targeted by the vaccine. Results: Isolates with a W: P1.5,2: F1-1: ST-11 (cc11) designation and belonging to the emerging 2013-strain of the South American-United Kingdom MenW:cc11 sublineage were responsible for an increase in carried group W strains. A multifocal expansion was evident, with close transmission networks extending beyond individual dormitories. Carried group Y isolates were predominantly from cc23 but showed significant heterogeneity, and individual strain designations were only sporadically recovered. No shifts toward acapsulate phenotypes were detected in targeted meningococcal populations. Conclusions: In a setting with high levels of MenACWY use, expansion of capsule-expressing isolates from the 2013-strain of MenW:cc11 but not MenY:cc23 isolates is indicative of differential susceptibilities to vaccine-induced immunity.


Assuntos
Portador Sadio/epidemiologia , Transmissão de Doença Infecciosa/prevenção & controle , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis/isolamento & purificação , Sorogrupo , Adolescente , Adulto , Portador Sadio/microbiologia , Estudos Transversais , Feminino , Genótipo , Humanos , Masculino , Infecções Meningocócicas/microbiologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/classificação , Neisseria meningitidis/genética , Neisseria meningitidis/imunologia , Estudantes , Resultado do Tratamento , Reino Unido/epidemiologia , Universidades , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia , Sequenciamento Completo do Genoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...